Glycogen synthase kinase-3beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth.
نویسندگان
چکیده
Ex vivo expansion of cord blood cells generally results in reduced stem cell activity in vivo. Glycogen synthase kinase-3beta (GSK-3beta) regulates the degradation of beta-catenin, a critical regulator of hematopoietic stem cells (HSCs). Here we show that GSK-3beta inhibition activates beta-catenin in cord blood CD34(+) cells and upregulates beta-catenin transcriptional targets c-myc and HoxB4, both known to regulate HSC self-renewal. GSK-3beta inhibition resulted in delayed ex vivo expansion of CD34(+) cells, yet enhanced the preservation of stem cell activity as tested in long-term culture with bone marrow stroma. Delayed cell cycling, reduced apoptosis, and increased adherence of hematopoietic progenitor cells to bone marrow stroma were observed in these long-term cultures treated with GSK-3beta inhibitor. This improved adherence to stroma was mediated via upregulation of CXCR4. In addition, GSK-3beta inhibition preserved severe combined immunodeficiency (SCID) repopulating cells as tested in the nonobese diabetic/SCID mouse model. Our data suggest the involvement of GSK-3beta inhibition in the preservation of HSC and their interaction with the bone marrow environment. Methods for the inhibition of GSK-3beta may be developed for clinical ex vivo expansion of HSC for transplantation. In addition, GSK-3beta inhibition suppressed leukemic cell growth via the induction of apoptosis mediated by the downregulation of survivin. Modulators of GSK-3beta may increase the range of novel drugs that specifically kill leukemic cells while sparing normal stem cells.
منابع مشابه
Inhibition of glycogen synthase kinase 3beta during heart failure is protective.
Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3b...
متن کاملNT3 inhibits FGF2-induced neural progenitor cell proliferation via the PI3K/GSK3 pathway.
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth an...
متن کاملStabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells.
The proliferation and differentiation of neural precursor cells are mutually exclusive during brain development. Despite its importance for precursor cell self renewal, the molecular linkage between these two events has remained unclear. Fibroblast growth factor 2 (FGF2) promotes neural precursor cell proliferation and concurrently inhibits their differentiation, suggesting a cross talk between...
متن کاملGlycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase member that activates the c-Jun N-terminal kinase (JNK) pathway. Aberrant activation of MLK3 has been implicated in neurodegenerative diseases. Similarly, glycogen synthase kinase (GSK)-3beta has also been shown to activate JNK and contribute to neuronal apoptosis. Here, we show a functional interaction between ML...
متن کاملCyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta.
Agents that elevate intracellular cyclic AMP (cAMP) levels promote neuronal survival in a manner independent of neurotrophic factors. Inhibitors of phosphatidylinositol 3 kinase and dominant-inactive mutants of the protein kinase Akt do not block the survival effects of cAMP, suggesting that another signaling pathway is involved. In this report, we demonstrate that elevation of intracellular cA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cells
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2008